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A.3.2.1 Geophysical Fluid Dynamics Laboratory 

Climate simulations at GFDL used the coupled climate model recently developed at 

NOAA's Geophysical Fluid Dynamics Laboratory, which has been previously described 

in detail (Delworth et al., 2006). We will summarize here. The model simulates 

atmospheric and oceanic climate and variability from the diurnal time-scale through 

multi-century climate change without employing flux adjustment. The control simulation 

has a stable, realistic climate when integrated over multiple centuries and a realistic 

ENSO (Wittenberg et al., 2006). Its equilibrium climate response to a doubling of CO2 is 

3.4C1 (Stouffer et al., 2006). There are no indirect aerosol effects included in any of the 

simulations. The resolution of the land and atmospheric components is 2.5° longitude x 

2° latitude and the atmospheric model has 24 vertical levels. The ocean resolution is 1° 

latitude x 1° longitude, with meridional resolution equatorward of 30° becoming 

progressively finer, such that the meridional resolution is 1/3° at the Equator. There are 

50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The 

ocean component has poles over North America and Eurasia to avoid polar filtering.  

 

Using a five member ensemble simulation of the historical climate (1861-2003) including 

the evolution of natural and anthropogenic forcing agents, the GFDL climate model is 

able to capture the global historical trend in observed surface temperature for the 20th 

century as well as many continental-scale features (Knutson et al., 2006). However, the 

model shows some tendency for too much twentieth-century warming in lower latitudes 

and too little warming in higher latitudes. Differences in Arctic Oscillation behavior 
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between models and observations contribute substantially to an underprediction of the 

observed warming over northern Asia. El Niño interactions complicate comparisons of 

observed and simulated temperature records for the El Chichón and Mt. Pinatubo 

eruptions during the early 1980s and early 1990s (Knutson et al., 2006). In Figure 7d of 

Knutson et al. (2006), where the model ensemble and observations are compared grid 

box by grid box, ~ 60% of those grid boxes with sufficient observational data have 20th 

Century surface temperature trends that agree quantitatively with the model ensemble. In 

general, many observed continental-scale features, including a 20th century cooling over 

the North Atlantic, are captured by the model ensemble, as Figures 7a and 7c in Knutson 

et al. (2006) show. However, the model ensemble does not capture the observed cooling 

over the southeastern US and it produces a 20th century cooling over the North Pacific 

that is not observed. 
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A.3.2.2 Goddard Institute for Space Studies 

The GISS climate simulations were performed using GISS ModelE (Schmidt et al., 

2006). We use a 20-layer version of the atmospheric model (up to 0.1 hPa) coupled to a 

dynamic ocean without flux adjustment, both run at 4 by 5 degree horizontal resolution, 

as in the GISS-ER IPCC AR4 simulations (Hansen et al., 2007). This model has been 

extensively evaluated against observations (Schmidt et al., 2006), and has a climate 

sensitivity in accord with values inferred from paleoclimate data and similar to that of 

mainstream GCMs; an equilibrium climate sensitivity of 2.6°C for doubled CO2. 

The modeled radiatively active species influence the climate in the GCM. Ozone and 

aerosols can affect both the short and long wavelength radiation flux. Water uptake on 
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aerosol surfaces influences the aerosol effective radius, refractive index and extinction 

efficiency as a function of wavelength and the local relative humidity (Koch et al., 2007), 

which in turn affects the GCM’s radiation field. 
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The GISS model also includes a simple parameterization for the aerosol indirect effect 

(Menon et al., 2002) (see box on aerosol indirect effect). For the present simulations, we 

use only cloud cover changes (the 2nd indirect effect), with empirical coefficients 

selected to give roughly -1 W m-2 forcing from the preindustrial to the present, a value 

chosen to match diurnal temperature and satellite polarization measurements, as 

described in (Hansen et al., 2005). We note, however, that this forcing is roughly twice 

the value of many other model studies (Penner et al., 2006). The aerosol indirect effect in 

the model takes place only from the surface through ~570 hPa, as we only let aerosols 

affect liquid-phase stratus clouds.  

 

A.3.2.3 National Center for Atmospheric Research 

The transient climate simulations use the NCAR Community Climate System Model 

CCSM3 (Collins et al., 2006).  This model had been run previously with evolution of 

short-lived species in the future for the IPCC AR4. The model was run at T85 (~1.4° x 

1.4° resolution). For this study, a new simulation was performed for 2000-2050 in which 

ozone and aerosols were kept at their 2000 levels. The equilibrium climate sensitivity of 

this model to doubled CO2 is 2.7°C. 
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